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ABSTRACT 

A formulation of field theory given by Van Hove in 1955 is shown 

to be useful for putting “parton model like ideas” on firm theoretical 

grounds. This is done by discussing electron-proton deep inelastic 

scattering, electron-positron annihilation process and proton elastic 

form factor, A basic requirement that must be imposed on any field 

theory in order to discuss the concept of hadron constituent is given. 

To put the formulation on a firm ground (with respect to renormalizability) 

we assume that the wave function renormalization constants of the theory 

are finite. This assumption satisfies above mentioned basic require- 

ments, though probably not necessary. Within this framework 

we prove tiW,(q’. v) is equal to that of the parton model. In this 

formalism, electron-positron annihilation process is quite different in 
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character compared to that of electron-proton deep inelastic scattering. 

Constancy of the ratio o(e+e- - hadrons)/u(e+e- - pfk-) can be derived 

only if much stronger assumptions than the one mentioned above is 

adopted. The price paid for simplicity in renormalization procedure is 

tv.o physically undesirable results: (a) The proton elastic form factor 

is probably finite at large momentum transfer, (b)v W 2 is finite and non 

zero at x = 1. It is conjectured that these problems can be solved 

without changing other results by allowing infinity in wave function 

renormalization constants. 
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I. INTRODUCTION 

Experiments studying the deep inelastic scattering e fp * e + anything 

performed by the MIT, SLAC collaboration’ show scaling behavior for 

the structure functions v W 2.and W 1 . That is, as Q2, v -m with 
2 

x = & fixed, v W2 and Wi are functions of x only. The variables are 

defined in Fig. 1. At first sight, the experimental result is not so 

startling. After all, nature has only four choices, either VW 
2 

- 0, m, 

an oscillating function of Q2, or a finite functions of x. 

The result becomes more interesting when we try to understand it 

theoretically. So far, there are at least two distinct theoretical approaches: 

(a) The parton model. 2 In this model, the proton is seen as a super 

position of point like constituents named partons. In the deep inelastic 

limit it is assumed that the interaction of a parton with the photon can 

be isolated. Then, due to the point like nature of the partons, the 

inelastic proton form factor approaches a constant value as Q‘ * m , 

x fixed. The possibility that vW2 - 0~ is avoided by a sharp cut off in 

the transverse momentum distribution of the partons. In this model, in 

addition to understanding scaling of v W 
2’ v W2 can be related to the 

probability of finding a certain type of partons in a proton. (b) Field 

theory. 
3 

v W2 is calculated in terms of a perturbative expansion of 

field theory. It was found that there are infinite sets of Feynman 

diagrams that violate scaling. That is, in the scaling limit, their 
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* 

contribution to vW2 goes as (log $1 Furthermore, certain sets of 

Q2 diagrams sum up to a term which goes to infinity as some power of -. 
MI2 

The parton model gives the exciting possibility of observing 

constituents of the hadrons. We are, however, reluctant to accept it 

at the expense of giving up the field theoretic concept of the hadrons. 

This is especially true since many of the ideas incorporated in the parton 

model are borrowed from field theory. Independent of the parton model, 

if vW2 continues to scale at higher energies, we must settle the question 

of whether scale breaking of v TN2 predicted by the, perturbation theory is 

specific to the perturbation:approach orit is a g~eneral property of the field 

theoretic approach. 

The purpose of this paper is to point out that Van Hove’s formulation 

of field theory coupled with some basic starting assumptions yields 

powerful tools for studying basic ideas on constituents of hadrons. We 

illustrate it by specific examples. We discuss the,electronproton deep 

inelastic scattering, tlie~electron-positron annihilation~pracess, an&$he~elastic 

proton form factor. We start out by discussing the requirements that 

must be imposed on our theory so that it has at least a fighting chance 

of becoming a framework in which the parton model can be understood. 

The basic assumption of the parton model is the existence of 

probability function for finding n partons with momenta k 
i >...I kn as 

an intermediate state of a physical proton. 
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/<p/k,,..., k,>‘l’G >& 
I 

i=~+ld3kiI<pIkl> . ..I kn>kn+l >... km’!*Ci.i) 

We have ignored the statistical factors. This is not a trivial assumption. 

Consider for example unrenormalized eigenstate of the fuH Hamiltonian 

corresponding to a proton (i. e. 1 p> = $7 1 %r 
> where N = i pm / p,,>). 

Since parton states, the eigenstates of free Hamiltonian, form a complete 

set of states the norm <p 1 p > of the state is ur ur 

N =/jId3kj j=, h;ijd3ki, <p,, ,kl,. . . ,kn>kn+i,. . . ,k,> / ’ (1.2) 

n 
Suppose the phase space integra.1 TI d3kj is divergent. J =I 

Redefining 

2 m 
) <p/kf>...>kn>‘/ =+ ,Za ii,-ld3ki) <P,, j kl>. . . , km> ) ’ 

we see that <p [ p> = 1 but (<p 1 kj, . , kn> ‘1” isczero for any given 

configuration. 
n 

Convergence of the phase space integral n d3kj in (1.2) is a j=1 

necessary condition which any field theory must satisfy if its elementary 

fields were to have physical meaning. 
5 Even if jtid3k. integration (1. 2) 

J 

is finite, N could be either finite or infinite. The infinity may come 

from divergence of 

N’ = $, 
I 

iE+ld3ki j <P,, 1 kl’. . . * ,km>12 (1.3) 
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In this paper we assume that wave function renormalization 

constants for any hadronic physical state is finite. 
627 This assumes 

much more than convergence of phase space integrals ,9, d3kj in (1. 2). 

It has, however, an advantage that it guarantees the:renorm&za- 

tion proceedure of the theory to be.simple. This is a great advantage’Since 

we are mainly interested in the formulation of the theory. Once the 

theory is seen to be in firm foundation, the starting assumptions can 

be loosened to obtain phenomenologically more desirable results. 

It should be admitted, that our discussion of renormalization is 

incomplete and renormalizability, at this stage is still a conjecture. 

With finite wave function renormalization constant, however, this 

conjecture is a safe one. 

We obtain the following results: 

899 
(a) In the scaling limit, we obtain 

vw2k12i v) = C ei2 x fi(x) 
i 

(b) Another application of the parton model is the calculation of the 

cross section for electron-positron annihilation into hadrons. The 

model predicts R = a(e’e- - hadron)/ cr(e+e- - pfp-) to be constant at 

10 
high energies. Experimentally R is monotonically increasing with energy 

and at s = 16 GeV2, R=4.7 i 11 1.1. It is shown that our formalism and 

the starting assumption are not enough to derive this parton model 

result. This is an indication of the possibility that the parton model 

is successful in the analysis of vW2 but not in the analysis of R. We 
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will also give an assumption which enables us to obtain bound R 

by a constant. 

(d) Within thiB’f.ormalism we argu&h%t’(i)‘fhe proton elastic ~. 

form factor does not vanish at large momentum transfer, (ii) v W2 is 

finite and nonzero at x = i. These can be cured by relaxing the assump- 

tion that N is finite and take N’, and thus N, to be infinite. 

In Section II we point out the defects of perturbation theory which 

are corrected in Van Hove’s formalism. The origin of the scale breaking 

terms in the perturbative calculation of vW2 is explained. This is 

crucial in understanding why we do not have the same scale breaking 

effect in our formalism. In Sec. III we briefly describe Van Hovel3 results. 

In Sec. IV we discuss electron-proton deep inelastic scattering. In Sec. V 

we discuss the electron-positron annihilation process. In Sec. VI the 

proton form factor F,(q’) is discussed. In Appendix A we supply some crucial 

ingrediants needed for deriving the parton model result for UW2. In appendix 

B we define the proper vertex function needed to study renormalizability. 
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II. PERTURBATION THEORY 

The major success of the quantum field theory is the perturbative 

approach to electrodynamics. The usual generalization of the theory to 

strong interaction is to obtain similar perturbation series as one 

encounters in QED and sum up the series. There is one serious problem 

to any calcultion along this line. Let us consider a field theory where the 

total Hamiltonian z can be decomposed into H and A V the free and inter- 

action parts of the Hamiltonianres~pectively. ,4t t = -a, when the projectile 

particles are traveling toward the target particles, the target and the 

projectile must form wave packets which are superpositions of eigen 

states of $$?. The asymptotic states in the formalism must be constructed 

with eigen states of z Consider, for example, a perturbation calcula- 

tion. When x is small, the asymptotic state which is an eigen state of 

H is approximately an eigen state of zand the calculation can be 

performed consistantly. When A is large however, there is nothing in 

the formalism whichguaranties that the asymptotic states are eigen 

states of &?1’ Therefore an obvious extension of the QED approach to 

a field theoretical calculation of hadronic effects is inadequate. 

In particular, the comments made above on the perturbative 

calculation apply to the existing calculation of the structure functions 

VW 
3 

2’ 
To understand the perturbative approach, we follow the calcu- 

lation of Chang and Fishbane. 
3 

In their Lagrangian, the strong inter- 

acting fields are a charged spinor (proton) and a neutral pseudoscalar 
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(pion) coupled with 
13 

XV(x) = iX $(x)Y~$(x)$(x) (2.1) 

$and C$ corresponds to proton and pion fieldsrespectively. The photon couples 

with proton and the leptons in the usual w’ay. The simplest. diagr,an’ which 

gives a scale breaking effect is shown in Fig. 2. The S matrix is 

obtained by squaring the contribution and integrating k over the allowed 

phase space. The phase space integral is of course finite due to the 

energy conservation. If we ignore the energy conservation between the 

initial electron and proton state and the final electron, proton and pion 

state, the phase space integral diverges logarithmically. The allowed 

phase space volume goes to m as Q‘ + m. Thus one obtains a result 

that the contribution of above diagram contains a term log Q2/M2. 

Take M to be theproton mass. Therear,e+&inite sets of&her;gnaphs, 

but the origin of the scale breaking effect is unchanged. For the 

diagram shown in Fig. 2, the initial proton is an eigen state of H and if 

X is large, we do not expect the answer to be reliable. Suppose there 

is a way to guarantee that the initial proton is an eigen state of &? 

Then a new graph corresponding to this process is shown in Fig. 3. 

Note that a wave function for proton to be in a state of a bare:pionnand a bare 

proton replaces X. It is possible that thiswave function mayhaTe 

slight damping suppressing the part of phase space where the bare 

proton and pion carry large transversal momentum with respect to 
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the physical proton momentum. Then the integral for such a process 

converges even without the energy conservation 6 function and its 

contribution to v W2 is finite in the limit Q2 - m. What is necessary 

in investagating the scaling behavior (or other strong interaction 

phenomena) in terms of the field theory is to formulate the theory in such 

a way that inital state is always an eigen state of $$?. This is accomplished 

by the formalism discussed in the next section. 
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III. FORMALISM 

A. Summary of Van Hove’s Formalism 

In this section we summarize the results of Ref. 4. The Hamil- 

tonian H + hV contains time independent unperturbed part H and a time- 

independent perturbation term A V. The state ) a> is an eigen state of H 

HI a> = ~((~11 cy> 

with eigen value E (cu). We call the eigen states of H parton states. 

LY denotes the collection of quantum numbers corresponding to that state. 

A state 1 CYY> with n partons is normalized as ’ 

+[a*> = i=i h3(ki-ki’ ) i 6 
cy. ct.’ 1 I 

(3.1) 

where ui denotes other discrete quantum numbers. When the exact form 

of the normalization is not necessary we write <LY 1 a’> = 6 
Qci’ 

as a 

short hand to mean (3. 1). Without loss of generality we take V to be 

nondiagonal. The resolvent operator is defined by 

(3.2) 

where Do 
P 

= (H - 1)-‘. It is also convenient to define two operators 

defined in the Hilbert space ofparton, states. 

D, = {RI Id 

G e = t-v n;i (-ADpVf? 
id 

(3.31 
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where { }d and { > id correspond to the “diagonal part” and “irreducibly 

diagonal part” of the operator { } respectively. By diagonal part of 

an operator, say M, we mean the piece of <IY’ / M 1 cu> which is propor- 

tional to d 
cm . 

Note that in the S matrix language, {M}d is the 

“completely disconnected piece” of M. Let us illustrate what id means 

by an example. Suppose we want to calculate <U / Gp 1 a> G Gp (a) the 

nth term of Ge (a) is 

<rU n-l I VD~ I “n’<“n I V I ~‘1 id 

‘!ia’ means that portion of the diagonal part which is obtained~whenthe 

intermediate states / cut>, . . . 1 cy > are kept different from each other n 

and the states 1 a>. With these definitions, two identities~ can be shown. 

D 
e 

= (H-P -1 ‘Gg )-’ 
(3.4) 

Rl 
=Da +D p j,(-AVD, Jn 

nd 

where { }nd meaning “non diagonal- part” is comput~~d~betweeh~the 

orthogonal states <aI and 1 cy’> in such a way that the intermediate 

states j(~f> . . . 1 (Y > are kept different from each other or from 
n 

1 cu> and 1 ry,>. The eigen state of the Hamiltonian can be obtained 

from the properties of RI. First note that 

m 

H+XV =$ E Abs RHdE 
-m 

(3.6) 
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where 

Abs R E -R E-ie’ I 
E>O (3.7) 

Using (3. 5) it can easily be seen that 

Abs RE = Abs DE 

(3.8) 

+ jf E+ioV)m Abs DEWDE-io)n-m 
1 nd 

with the notation D E f io = Fir DE * ic. Now calculate Abs DE. 

From (3.4) 

-1 
+jDp [a> f Dp(a) = [ E(LY)-P-X2Gp(u)] . (3.9) 

Expanding at I = E 

Abs D,(a) = ZnN(ru)6:(~(r~)-E-X’G~(iu) ) (3.11) 

where 

N(a) = (1 + A 
2 aGp (a) 

1 
-1 

ai 1 -E(Q) 
(3.12) 

so, 
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Abs RE 6(H - E - X’G,) 

(3.13) 
(-Am 

It can be shown that DE + id and D E _ i. can be replaced by DE f i. 

and DE 7 io respectively. Putting~in complete set of state and defining 

(-’ DE(cr)*ioV)n } 1 IS> (3.14) 
nd 

we obtain 

Abs RE = 2rr 
I 

1 a>+ *<crl 6(E-E(Q) ) dru (3.‘15) 

2 
E(a) = E(O) - A GE(@) (a). (3. 16) 

ThenH+ XV= LY>+* <a / E(C) da. Using properties of the operator 

Abs RE, the orthogonality of states *<:ry 1 (Y Y* = 6 
cm ’ can be shown. 

Thus using (3.16) we have 

(H + XV) 1 cy>+ = E(Q) 1 cu>*. (3.17) 

Therefore ) a>+ (1 LX> 1 form a complete orthogonal eigen states of2 _ 
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Define 

Ct> ICY> (3.18) 
as 

= N(a) I+ & f (-A ‘eDE(Cy)tiC VI” \I nd 

where Ya is a projection operator which eliminates all intermediate 

states that are responsible for interactions between partons in state (Y. 

Only intermediate states responsible for self interactions of partons 

survive. Defining 

36-THY 

‘P(t) = b+t(a)( CT>* exp [ -it E(a)1 dcz (3.19) 

it is shown that 

t?$,[‘+‘@) -/C,(a) 1 a>as exp [-it E(Q)] CL@] = 0 (3. 20) 

Since c+( cy) is arbitrary, there is one to one correspondance between 

u>+ and I CYY> 
as’ 

It is important to note that energy associate with 

@Y> as is E(a), the eigen value of 1 a>+. 

Suppose 1 cu> = Iki, . . . . kn> then since E(cY) is the energy of 

E(a) = i;i E(kiL E(U) = i;i e(ki) (3.21) 

where E(ki) is an energy of a free physical particle with momentum ki. 

c(ki) is free energy of bare particle with momentum ki. Thus we can write 
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n 

GW (a) = igi GEtkil hiI 

(3.22) 

E(k 1 = c(ki,l - A 2GE(k, )(ki). 
1 

For large ki we obtain 

2 
A GE(ki) 

mo2-M2 
(k 1 = 2k i 

i 
(3. 23) 

where m. and M are bare and physical masses respectively. c;E(,)(a) 

is, therefore related to the mass shift of state Q. 

S-matrix. 

Consider the wave packet 

/vi, ,(t )>* = ci, ,(a) 1 or>* exp[ -it E(u)] da. (3. 24) 

Starting from the definition of S matrix it is shown that 

lim 
t -+a 

+yq Is I v2(t2)>+ 

1 t -+-m 
2 

3 
I 

c&Y) +<cu Is / (Y ‘>+ c(cu’)duda’ 2 

where +<a / s 1 Q’S = &(a-cu’*) - 2rriX &(E(@)-E(a’) ) [ N(@)N(a’ )] + 

(3. 25) 

+I V-A{ VR E(ir)+ioV jnd 1 @ ” 
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Once we obtain <aI S[ a’>- we can obtain the S matrix for the wave 

packet. 

B. Renormalization 

Expression for Gp (u) is in general divergent and thus Dp (cu), as it 

stands, is not well defined. Using (3. 20) we write 

D,(a) = [(E(Q)-1) (i +x2 ‘E(;:;; 1 Tp(@) ))-I (3. 26) 

Since N(Q) is finite by assumption, Gp (IY) is at most logarithmically 

divergent and thus (3. 26) is well defined. In conventional perturbation 

expansion, the wave function ren~~i?m’aLiza~idn:conStant together with’the vertex 

renormalization constant get absorbed in redefinition of coupling constant. 

In Appendix B we define the proper vertex function r. We also show 

that the S matrix as well as the wave fun&ion of hadronic states can be 

written in terms of AI and D. As it is discussed above D does not 

contain any infinity. Suppose r is infinite. In this paper we conjecture 

that l7 = Zf, where ? is well defined. Then infinite Z can be,absorbed in 

redefinition of X . 

C. Definition of the Proton,State 

For definiteness let us consider bare proton and bare pien fields, to be 

the eigen states of the free Hamiltonian H. The perturbation term is given 



- 18- 36-THY 

by (Z.,i). Let [p> denote the eigen state oi H, a bare 

proton state. The eigen state of H + XV can be obtained by the operation 

I P’ as = lP’+ = I p>- = OJP(p)*io I” (3.27) 

where 0 
E(p)*io 

is defined by (3.14). We define the state [ p>, to be 

the proton state. It corresponds to a bare proton surrounded by a 

cloud of pions and proton antiproton pairs. It should:be constructed, with 

a physical proton state in a conventional field theory. 

+(t) = utt, -aI) !Jfree(-= ). (3.28) 

“. 14 
Asymptotically, therefore, the. protonzbecomes’bare. From (3.14) we 

see that 

*<p’ 1 p> = N(p)* b3(p-p’) (3.29) 

This is the amplitude for finding a bare proton, and nothing else, in a 

physical proton. This number is zero if N’ [ defined in (1. 2)] is 

infinite and finite if N ’ is finite. In this paper, we treat only the case 

of finite .lY ’ . 

C. Transversal Momentum Damping 

In the introduction, we saw that N must be finite 
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in order for a theory to have any chance of reproducing 

parton model results. This restricts large transversal momentum 

behavior of*<p ( kl.. . kn> ‘. 
n 

When k. 
Jl 

- m keeping igiki = p, we 

expect 
15 

(3.30) 
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IV. ELECTRON PROTON SCATTERING 

In this section we calculate the S matrix for e + p - e + anything. 

As usual we treat the electromagnetic interaction only to order cy, 

but we treat the strong interaction to arbitrary orders in A. We deonte 

p, e> to be the bare proton and electron state. Denoting E(p, e) as 

the incident energy we have 

p, e>+ = 0 E(p, e)+io lpje’ (4.1) 

as our initial state of a physical proton and an electron. Similarly we 

denote 1 cy, e ‘> as a state with bare hadrons and an electron. The state 

-<cr,e’I = +,e’ 10~(u,e,)-io (4.2) 

is the physical final state corresponding to the state 1 (Y, e ‘> where 

E(a, e ‘) is the energy of the final state. The interaction Hamiltonian 

of the system is 

V(x) = i$(x)y5+(x)$(x) -~$(~)y~+(x)A%) -F ~e(x)yp~(x~p(x) (4.3) 

where Ap is the photon field, +e is the electron field, + and $ are charged 

spinor and neutral scalar fields respectively. We take these couplings 

for definiteness but the arguments are not restrictive to these forms of 

interactions. The S matrix for the reaction e + p - e + anything can be 

obtained once we know 
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1 
<a,e’lS[pe > = -2ni h(p,e)N(a,e’)!’ b(Eip,e)- E(cu,e’)) 

<a,e’/ XV - x2{VR E(p, e)+ioV1ndlP’e’ 
(4.5) 

XV - x2{VRYjnd = XV - h2{VDLV}nd +h3{VDpVDpV}nd-... (4.6) 

Substituting (4.4) into (4.6) and keeping only the term proportional to 

2 e , we obtain the single photon exchange contribution. 

’ A v - A 2(vRp ‘)nd’ single photon exchange (4.7) 

= ((4 + [n%i (-hVDp InI nd) (-eve,) (1 + lnii (-ADpV?l nd) 

(-eD V p em) (1 + [nit (-ADgV?lnd} 
nd 

Ca,e’/S/p,e> = -2ni[N(p,eIN(cr,e’Ili HE(p,e) - EE(cu,e’) ) 

c~,e”/oE+(~ e)-io(-eVem)RE(p e)+io(-eVem)OE(p e)+io /p,e> (4’8) 3 

Diagramatically.(4.8) corresponds to two terms shown in Fig. 4. With 

some algebra we obtain 

<,~‘Is jpe> = -Zni[N(p,elN(ru.e’)l 6(E(pI +Ee - E(a’) - Ee,) 

$qid3k; $ d3kjd3q <a d / oLcp j-io 1 k;’ . . . >k,’ 

<k’ 1 
,..., k; I(-eVem) Ikl,...‘km,q> <klz.-.skrn 

(4.9) 

I* E(p )+ioOE(p)+io ’ ” 

:. (4.b)) <qe ’ 1 (-eV,m) (e> + term representing Fig 
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We have used the following points. To the lowest order in e, the 

incident energy E(p, e) = E(p) + Ee, the final energy E(a, e’) = E(C) + 

E e” ‘0 
=Ee-Ee,, 0 

E(p,e) +io 
Ip,e> =0 E(p) + io I p’ I e’ and 

<a’e’ I OG(p,e) - io = <CYu’e’ I O&e, e’) _ io = <e’ 1 <a’ ! oi(u) -io’ 

The last two equalities can be checked by explicitly writing down the 

first few terms of 0 
WIT, e) I 

I+> and <a;e’ IO 
f 
Eta, e ’ ) 

. With 

tedius but trivial algebra we obtain 
3 2 

E 
d o 

ea3 
d P,, 

= -%- Tr (tieyPISe .Y “) Im TP~ 
he 

(4.11) 

Im T = 
P” 

d@(2ir)6;4(p +q - pLy)“~‘+<P:I,J:(0)I~>_ -<culJv(0)lp>+ 

where 

-<a I( 

.-- 
d3x eTx Jp(vdIp>+ 

d 
3 

k dy’& Ceil hkk, ) 
I 

J 1 (kiq)‘kO 
fi(kq)ywu(k) 

-<ala+(k+q)a(k)1y> <YIP>+ 

p, is the total four momentum of state 1 a>. ei is the charge of i th 

parton in the unites of e, m is the parton mass. Define 

(4.12) 

Im T =-L(, -p’sq )(py -p’Qq”)w2-(g - 
PV - M2 P q2 P (p PV 

m,wl (4.13) 
q2 



-23- 36-THY 

It is convenient to evaluate W2 in the P + m frame. 

M2 
p = (P + FP’ 0, 0, PI 

q = (E 
P’ a 0) 

(4.14) 

In this frame, setting v = TV = 0, 

w2 = e. 6 1 k k,) (i,Zeu ei ,6 k, k, 
’ 1 

)6(E(p) + q” - E(a) ) 
-2 ’ 1’ 

(4.15) 

M (2,,)3 --+<I+~> <Y21a+W)aW+q) I@ P v _ -<alaf(k+q)a(k) IY~;> <yi ]P>+ 

The matrix element 

/ 
dYidY3 -<a 1 y3 > <y3 jaik,%)a(k) /Y~Y ~<yil :P>+ (4.16) 

-J 
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is shown diagramatically in Fig. 5. 
y 1 and y3 are states of free partons 

and 1 p>+ and 1 o> are a physical proton state and a physical hadronic _ 

state respectively. Figure 5 is very similar to the deep inelastic 

scattering diagram in the,parton model. There is an important 

difference. In particular, final state interaction is neglected. 17 

To proceed with (4. 15) we must understand E(cu 1. In Appendix A 

we show that 
Q2 2 v m2+P. 2 -2 

Jl n m +P. 
E(a) =P+AEwee+-+ C 

11 
2zP j =1 2Yj p 

+, z-- 
J =v+l 2YjP 

(4. 17 ) 

where we have denoted / cy > = 1 I 1, . . . , en; (weep P 
-’ J 

= (Y.P, r. ).. 
J Jl 

The specified momenta correspond to the non wee hadron momenta 

and (wee) corresponds to a collection of wee hadron momenta. p : 
Jl 

rj- -2 Q’ Both Iji for 1 2 j 5 v and ;. 
Jl’ 

for Y + 1 5 ‘j 5 n 

are bounded by some constant 5. 

AE wee = Ewee (@k(CP ) z wee 

This is due to the presence of wee hadrons. Define 

I 
lil for 1 5 j 5 v 

br = I 
Jl Tjlforv+is jsn 

(4.18) 

(4.19) 
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~(E(P! 
0 

+9 
M2 Mv QZ 

- E(u)) = 6 (AEwee + z i- p - - - 2zP 

Note that if ia>- state contained a wee hadron, AE 
wee = O(m) the energy 

conservation does not allow any wee hadrons in the final state. Restrict - 

ing /cu >- sum to only those states without wee hadrons, we have 18 

vW2 = 
II 

da dyidy2d3kd3k’(i& e. 6 

nw 1 
1 kk,)(i-sy eit6 

1 2 
k ,k,! z&@-x) 

1 

(27T)3 
(4. 21) 

- +<P\Y~><Y~/ a*(k’)a(k’+q)l (Y>- -<ala+(k+q)a(k)) yl><yi /p> -~ 
V + 

Wehave droped the last term in the argument of the s function given in 

(4.20). The region yj = O(m/v) requires some care. Note that a vector 

$27, p sin@,-pcose) in the laboratory frame has a z component 

in the infinite momentum frame (-p case + p + m )P/m. The only way for I” 

v. to be O(m/u) is to have p = O(u) and 9 = 0(&v). Such a vector in the 
‘I 
laboratory frame has a trnsversal momentum Q with respect the photon 

direction. If the differential cross section is smooth in this kinematical 

region, the region yj = O(m/ v) gives negligible contribution to the total 

cross section. Thus we need not consider the possibility yj = O(m/ v ). Also, 

transforming a wee vector to the laboratory frame we can convince our selves 

that the amplitude may strongly suppress the wee region. Thus nw sign 

can be droped. Then, 

f 
vw2=J 

di d3k&-jJdy(.C e! 6 
ley 1 kki 

) (X3 
V +<P / a+(k)a(k) !y ><Y [p > + (4.22. ) 
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we have used the commutation relation i a(k+qi, a+(k ‘+qi) = 6 3(k-k ’ ! 

and neglected a term proportional t0 + <p ia+(k)a(k)a+(k+q)a(k+q) (:p>+. In the 

parton model notation, 
8 

v W2 = 2 ei2 x fiW 
i 

This is the parton model result. 

(4.23) 
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V. ELECTRON-POSITRON ANNIHILATION 

Treating the electromagnetic interaction to only second order, 

the S matrix for e+e- -f hadrons is given by 

<aIS [ e+e- > = -2rrie 6(E e+ + Ee- - E(u) ) 
(5.4) 

c 

I 
d3kid3k2 ei<a 1 O+E(,u)-io 1 i;klk2> <kik2;i / VemRE(ay)+ioVem 1 e+e-> 

i 

where Ee- and Ee+ are energies of electron and positron, respectively. 

V em is the usual electromagnetic coupling. 1 i;klk2> stands for the two 

parton state with momentum ki and k2 and i denotes the kind of parton 

with charge e.. 0 
E(a)-io 

[ cr> is the physical hadron state. This S 
1 

matrix is seen in Fig. 7. 

2 Y 
CT(e+e-+ hadrons)= a 

2 q4 
Tr(filypb2yu) (-qpy +q% IFI (q2) (5.2) 

9 

p1 and p2 are four vectors of electron and positron, respectively. 

- klpy- qp”,n(q2) = 
q2 

dcu(2rr16 G4(q-pa) <O 1 J;(O)1 a>- -<(Y/ Jy(0)/ O> (5.3) 

where 

d3x e lqx~ 
II 

p, is the sum of four momenta for the state <a] . 
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Denote / ey)= 1 P , . . ..ln; (wee)> 
1 

aj = (yjP, F’. ), 1 j denotes 
31. 

non wee hadron momenta and “wee” denotes other wee hadron momenta. 

p1 = (P + q2i8P, 0; q P 12, P) 

p2 = (P + q2J,8R, 0; ~- P q 12, P) 

m2+p2 
1 

in = tyi P+ 
IL 

2YiP 
> T il’ YiPI 

(5.4) 

2 2 
ki = (xiP + me’k I zil, x.P) 1 

n cq2J 
3 .3 

27 P 

= dG d kd k0(z%3* 

P24 v 
d(Ee+tEc--E(4~) $ eiej<k,q-ki I&>- -<a(j;k’,q-k’> 

(5.5) 

Finiteness of N(Q) yields 

1 -<f i,...ln:iwee)/i;klk2>~2~ 0 [Min{(. M 2+e 
x. ) ;~=l,...n}l (5.6) 

when ki+a while k +k = q fixed. k. - ‘I. 
1 2 l1 ‘j ” 

This bound on the transversal momentum behavior is not good enough 

to obtain any information. Note even the convergence of integral 

cannot be established from this bound. The physical reason why this 

process is SO different from the~deep:inelastic electron’prbtdrr.;Sc’~.tt~ring 

is that there is no rigid reference direction with which transversal 

momentum damping can be established. Both k and k ’ as well as 

state LY are integrated. 

The bound that ytelds information is 
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M 4+< 

1 2 2 O[ Min{ ( ) ;i = 1 - <Pi...., Qn;(wee) 1 i;k4k2> 1 Y.. 
-Jk. 

1,2} (5.7) 
P. 

11 Xi 11 

for large Q 
a1 

with s!i 7 
S 

= 2, +z, fixed. 

‘. Note that the power fall off in (5. 7) is larger than that of (5. 6) and that this is a 

statement of transversal momentum fall off of a hadron state with 

respect to a parton state. This does not follow from our original 

assumption. With (5. 7) integration over Q 1, . , ., en can be restricted 

to cones around kj and k2. Let Q 1, . -. Qv be in the cone around kl 

and Q d-1 ..* 
Qn be in the cone around k2. Then 

k2 k2 m2+P T 
2 

-(cQZ)weel +2& + 2(2-:)p + igi 
11 

E(c) = 2P + [ E 
wee 2Yi p 

z ..‘C 
il x 1 

;* = 
11 .I !~ 

Y. 
for 1 5 i 5 v 

‘i 
(5.8) 

Ti,I: - - i; 
2-x 2 

for v + 15 i 5 n 

This is the transverse vector for ri relative to gi and E2 respectively. 

The energy conserving 6 function in (5. 5) becomes 2 

6([E wee - (EQ ) 1 +x(21xip 

2 m2+ Q.’ 

z wee CkZ, -x(2-x)% +x(2-x) c 
2Y. 

I1 I ) (5.9) 
1 

If wee hadron is present in state I a.>-, Ewee - (CQz )wee is O(m) and 

energy conservation will be violated. Thus the sum over states Icy>- 

is restricted to those states without any wee hadrons. 
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Then, 

nur 

d3 k &$j ( KL 2-~~(;l-~))%(2-%)Le;ej d~~~-K;;loO_jo!lj ;KJ- 4 
ij (5. 10) 

We have draped the last term in the argument of the 6 function given in 

(5.9). The region yi = O(m2/E2) requires some care. A vector 

( rn2+p2 psinQ, r -p cos d) in the center of mass frame of the colliding beam 

122 has a z component in the infinite momentum frame (-p cc& ;‘p +m )p/ E. 

The only way for yi to be O(m2/E2) is to have p= O(E) and +I = O(m/ E). 

If the differential cross section is smooth near I3 = 0, the contribution from 

such a kinematical region is negligible. The approximation also fails if the 

multiplicity of hadrons withy i = 0 (E ) behaves as E/ m. 

dx x(2-x) = C 3 
i (5.11) 

We have sumed over all cv ignoring the nw sign. Due to the positive 

definiteness of the integrand, it is an upper bound. A wee vector in the 

infinite momentum frame corresponds to a vector with momentum of O(P) 

in the center of mass of the colliding beam. We can imargine that the amplitude 

is small in such an unphysical region. In such a case, the inequality becomes 

an equality and we obtain the parton model prediction. 

6 (e+e--, hadrons)= 

or R= L e.2 
i 

1 

We remind the reader that this result is obtained with an additional 

assumptions on the multiplicity and (5.7). This does not follow from our 

starting principles. 
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VI. PRICE PAID FOR SIMPLE RENORMALIZATION PROGRAMS 

The proton form factor can be obtained from (4. 15) 

Fl(qZ) = 
/ 

dyd3k ( C, e. b. 
icy 

1 k, k) -<P+q/ a+(k%)a(k) 1 y’<y / p’, 
’ i 

making a rotation, 

Fi!q2) = n;, <p/k,-x q * I"'" k. 1-.j -2-,q1 

Using our bound (3. 38) and identity 

m2 
dk 

1 1 ___~ = - 
0 ’ (k,+(j-x)Q)‘+’ kli+’ Q2E 

(6.1) 

(6. 2) 

for x # 1, we can show that the contribution to form factor from the 
1 

region (x-1) >> I/& vanish. Since N(p)’ is nonzero there is finite 

probability of finding bare proton at x = 1. This may give non vanishing 

form factor and, therefore,.,we cannot prove that F,(Q2) -OasQ’- -m. 

Note also that YW~ at x = 1 is proportional to N(p) f 0. These problems 

can be solved if we have N(p) = 0. From the discussion following (3. 29) 

if we start with a theory in which N’ = a, we have N(p) = 0. We con- 

jecture that relaxing the assumption of finite wave function renormalization 

constant will not affect other results discussed in Sections IV and V. 
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VII CONCLUSION 

In a field theory formalism, physical field is formed in terms of 

a cloud of bare fields. For example, in our formalism 

j (UP* = NkY+ [ 1 +i I -A DE(~)*ioV)nlndl ) CT>. 

A question arises whether the probability function for finding a proton as a 

state of m bare particles with momentum ki;. . . , km, 1 4p ( It*‘. . . , km> / 
2 

, 

is an observable or not. It is less demanding to ask whether [ ip 1 ki, . . . , 

km> ’ 1 2, defined in (1. 1), a probability function for finding m bare parti- 

cles with momenta kl., , , . km plus anything in a proton state,is observable 

or not. So far, we do not know of any well defined field theory for which 

these functions are physically observables. In the perturbative formalism 

of quantum electrodynamics, for example, a probability function for 

finding a physical electron as a state ,of $abare&ectronandm bare~ptins 

is not well defined. It is most interesting to find an example of a 

realistic field theory for which these functions are physically observables. 

In this paper, we leave this interesting problem aside and assume that 

there exists a field theory for which the probability function for finding 

a physical state to be in a certain bare state is an observable. 
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Van Hove’s formulation of field theory is particularly suited for 

our problem. Within this formulation we assume that (a) we are dealing 

with a field theory in which wave function renormalization constants for 

all states / ry> are finite. This implies that the phase space integral 

I jqid3kj 1 +<m(kl,...,kn>;2 

is convergent, (b) this formulation is renormalizable. We found that 

these two assumptions together with the formulation of field theory 

gave us a basis on which parton model ideas can be examined. The 

formulation also seemed to be promising as a basis for phenomenological 

studies. We summarize virtues and possible short comings~of our 

formalism: 

(1) It is important to note that structure of hadron, the cloud effect 

persists in the asymptotic states. 

(2) There is one to one correspondance between 

1 a>, 1 a>+, and 1 CYZ~~ 

and the energy of 1 (y>as is equal to the eigen value of / CY> 
** 

This allows us to write the eigen value of 1 a>* trivially 

in terms of physical masses. (See (3.2iL ) 

(3) After renormalization of D1 (mu), all masses in the formalism 

are physical masses. We never talk about free energy of 

partons. In the parton model, bare masses of partons must 
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be treated as well defined finite quantities. 

(4) The crucial step in discussing v W2 is the expression for 

E(Q) [see (4.17)1. With property (2), all dynamical infor- 

mation necessary to study E(m) is the starting assumption (a). 

(5) Property (2) may be a short coming of our formalism. For 

any given bare state [k 4,. . . , k,>, there is an asymptotic, 

state [ ki, . . . , kn>as where all particles are free except 

for self interaction. If we, therefore, admit that there is 

no fractionally charged particle in nature. we cannot have 

them in the bare states. This can be traced back to the fact 

that we cannot discuss bound states. 

It is important to understand the difference between our formalism 

20 
and that of Drell, Levy and Yan. In their work, the parton model results 

are investigated by the use of the perturbation expansion of the field 

theory. The transversal momentum cutoff is introduced by hand for 

each Feynman diagram contributing to the calculation of v W 2’ The 

equation which allows them to obtain the parton model result is 

Ep-E <<F MV and E - E << - where E 
up 

and E 
n un P up un are energies 

of the parton state 1 UP> and U 1 r-0 respectively. In order to obtain 

this result, there must not be any wee partons contained in the states / UP> 

and U In>. The justification of this is that each time ordered graph 

contributing to the calculation of Y W 2, gives negligible contribution 
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from the integration region where either 1 UP> or U 1 n> contains any 

wee parton. (This is one of the reasons why, in the analysis of Feynman 

integrals P - m limit is extremely useful. ) If we, therefore, generalize 

this property of the Feynman graphs as the property of the full amplitude, 

then their result follows. We were, however, reluctant to make this 

generalization which prohibits US to have any wee partons in the 

formalism. 

There are two ways to proceed from here. A complete under- 

standing of the renormalization proceedure for our formalism must be 

obtained. This allows us to discuss the possibility of N’ = m (see (1. 3) ). 

The advantage of this possibility is given in Sec. VI. As it is discussed 

in Ref. 2, it is interesting to consider the possibility of the partons 

being the quarks. There is no problem if we find the quarks in nature. 

Supposing that the quarks are not seen in nature, it is interesting to 

consider a theory which has the warks as 

bare states but such fractionally charged states are absent in the 

asymptotic states. In Ref. 4, Van Hove makes a distinction between 

two systems that can be described in terms of field theories. A non 

disapative system and a disapative system. This distinction is 

primarily made in solid state systems. The usual field theories being 

caxsidered in elementary particle physics is of non-disapative type. 

It is perhaps worthwhile considering, in analogy with some solid state 

systems, a possibility that some system of elementary particles are 
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described in the disapative type of field theories, This may give some 

clue as to how we go about eliminating the fractionally charged state 

from the asymptotic states. 
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APPENDIX A 

In Sec. IV we have seen that an upper bound on u W2 can be 

placed rather trivially in the scaling limit once we know the energy, 

E(cu 1, (4. 17). 

Due to the correspondance between 1 (Y> _ and 1 iy >as E(CC ) 

can be calculated with minimal knowledge of strong interaction dynamics. 

All we need to know about the dynamics is that N(G) is non zero.for any 

states [ cy>. What we want to do is to mathematically justify the following 

simple picture. The proton is seen as a jet of partons traveling along 

the z axis in a “narrow cone”. When it is struck by a photon with:large 

Q2 two jets are formed. (See Fig. 8. 1 State:: 1 (Y>- will be contained 

in these two cones. In practice we want to show that sum over cy in the 

expression for W 2, (4.45 ), can be restricted only within the cones shown 

in Fig. 8. Equation (4. 17) then follows by simple kinematics. 

The argument is simple but tedious. We first prove few seemingly 

unrelated points. 

Theorem 1. In the expression for W2, (4. 151,onIy the region 

kl, k; << Q is important. 

Proof. For fixed ks, place an upper bound on the integrand of (4. 15) by 

ignoring the energy conservation 6 function. One easily obtains 
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)s”+P / a’(k)a(k) 1 yf> <yl 1 pt>. 

Using (3. 31) it is seen that k 
1 

sum can be cut off at say 

k 
1 

- 5 << Q. 

Theorem 2. In the expression for W2, (4.15 ), only the region 

Iz -z’ 1 < O(g) is important. Other regions will give vanishing 

contribution to VW 
2 

in the scaling limit. 

This is very close to what is known in the parton model as the 

incoherent scattering assumption. 

Proof. Expand the expression for W2, (4.15), using (3. 10) and 

(3.19) 

dp,dp,dp,dy,dy,dkdk ’ (izy ei 
1 

bkk 
M (2*)3 

w2 = 
i 

) $ ,“,, ei < 6k,ki,) p 7 
2 

N(P2) 6(E(P2)-E(a) ) +<P 1 Y2’<Y2 1 a+(k’)a(k’+q) ( p2>q21a+(k+4ia(k)l Y1’<Yi Ip>+ 

+(+<ply2><y21ac(k’)a(k’hl) IPi’ 
(A-1) 

P 
z “c 

n=l m=O 
‘PI ( (DE(rr)+ioVim / p2WE(P2)-E(a) )N(P2) <!3, j (V DE(rr)-io)n-m ndl p3’ 1 

<p, 1 a+(k+q)a(k) ( yl ><Yt/P>+)} 

Diagrams for first few terms are given in Fig. 9. Suppose 

z #z’or /ki-k;/ 7 Q. First term in (A-t) does not contri- 

bute. There are two distinct ways to obtain non vanishing 

matrix element. 
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(i ) 1 p3> contains a parton with momentum ;i = (piz,zli) were 

PlZ 
= z’P and I;;,, - (k’+q)l! = O(l), and similarly 

[ pi> contains a parton with momentum p2 = (p ; 22’ 21 ) where 

p2z 
= zP and [;21 - (Wl j = O(1). 

(ii) [ pi> and 1 p,> contains no partons with large transversal momen- 

tum except for partons with momentum k’+q and k + q respectively. 

The first possibility is simple. The matrix element 

<+pla+,(k’)a(k’+q)/p 1> and <P, 1 at( 1 p> + both vanish inthe scaling 

limit. So it does not affect Y W2 in the scaling limit. 

In the second possibility final state interactions generated by 

(DV)m and (DV)n-m must be such that both of the state (3, and (3, 

become (32. The matrix element [ 1 in (A-i) can be rewritten as 

I : <pi / DE(a)+io(VDE(,itio)m-t V 1 (~,‘~(E(P~)-E(cY) ) 

“2 I V(DE(~)-ioV)nwm-l DE(cu)-io I P,’ 
(A-2) 

Denote Ipi> and IP,> as IP;,...,P’, k’+q>and IplJ...jps,Zk%> 
S 

respectively. And suppose that the transversal momentum of pl,. . . , p 
S 

andp;,..., p,’ are small compared to Q. 

I = 
ET P 

Q2 - 22:‘M.v 
<p1 IN DE(+io)m-l v I P2’ 

(A-3) 

<@,I VW V)n-m-l 1 p,> 2zP ~. 
E(a)-io Q2 -2zMv 
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We have neglected terms in denominators which are small 

compared to Q2. (P2 is canceled by normalization factors in V. ) 

First and second denominator factors are both small when z ’ Q2 
=z =2Mv 

The region where Iz - z’ [ = O(g) is not satisfied gives vanishing 

contribution in the scaling limit due to large denominator. 

In Sec. III we discussed transversal momentum damping implied 
2fe 

by finiteness of N(p). We derived 1 <kt, . . . , k 1 p+> [ 2 5 
n ), 

E > 0, i 2 j 5 n for large k. 
Jl 

with ji ki = P. 

Theorem 3. Setting 

A = 1. <(a 1.....Qn)[ai(~~)a(k).I.p>+12 

(A-4) 

B = /,<~Ia’(k’)~a+(k’+q))(g~,:.., Pnb- -<iQ,,.. ., Q ..n ) ) a+(k+o)a(k) / P>+ 1 

for /z-z*1 

, 

where 1. 
‘i 

11 =eil -J-Q, inthelimit 

Proof. By completeness 

< O($, 
2+e 

(5 ) 
‘il I> 

P ;.l becomes large. 

(A-5) 

c n 
s 

i’if d3~il-<(~19...9 en) lafk+q)a(k)Ip>+l 2 =+<pla+(k)a(k)/p> (A-6) 
+ 

for large 4. For finite Z. right hand side of (A-6) is well defined since 

N(p) is assumed to be finite. Since kl is limited by Theorem 1, there 

are only two independent directions p and kiq. Consider for exarrple, 
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n 
Q 1 integration with constraint izi Pi = p+q. The integrand must vanish 

sufficiently fast when Q f I or Q II -Y 1. Q (the transverse distance _ 
z 

between Q 1 and k-tq) become large. The energy denominators that 

appear in field theory calculations favor small Q I1 
or small Q ” Q II-z . 

Therefore, in general, in order for the integral in (A-6) to converge 

(A-5) must be satisfied for A. The inequality for B follows trivially 

from that of A. 

The abounds given by Theorem 3; enable us to cutt off the 

integrals of (4; 15). 

diu 6(E(p) + q - E(rr ) )MP $ 

/ 
dY2$.<y2(ei,6$ k. ) +<pi.a’(k’ia(k’+q)ly2> <y21 a>- 

I- 

(A-7) 

I dYl(i ZY 1 
ei ‘k. k) 

1’ 
-<a ) yl> <yi 1 a’(k+q)a(k) / P>, 

where 

dcu LC l? 
n j=i 

(A-8 1 

where we have denoted 1 CZ>- = 1 Q 1”” Q j,. . . , Qn>-. g is some 

parameter chosen so that M << 5 << Q. We have now established that 

it is a good approximation, in the scaling limit, to limit ourselves with 

the case where all non wee vectors of I a> are contained in two cones 

defined by (A- 8 ). 
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Proof of (4. 17). Consider 1 cy>- = [ I,, . . . , Qn, wee>-, 

Qj = ‘YjP, Qjl) (A-9) 

where specified momenta correspond to non wee hadron momenta-.?.: 

and (wee) corresponds to collection of wee hadron momenta. Total z 

component momentum is P. By momentum conservation, 

n ( c ‘<Bee 
jfi Yj =1-p 

+ term comes from z component momenta of wee hadrons 

We divide non wee members of / c+- .into two parts I.\., 

Qi,.e.,Qv ccl; 1 QjL 1 < 5 for 1 5 j 5 v 

Q v+l’.‘.’ Q n EC 
2: 

1~~ ->Q/ <Eforv+i>j>n 

Then j!i yj. =(t-‘tJi .? Y* =z 
;=w J ^ _ 

(XQ n mL+Q. L 
E(cu J - E ,wee(” ) = (i-+wee)r + .c 11 

J -1 2Yip 
* 

2 2 Y, 
! 

v %tmi_+ c” E(cu ) - AEwee(a ) = P + .x 
mZ+$ a+n )“I 

1 
J=1 29P j =v+i 2Yj p 

5 where 2, = Q. - z Q, AEwee(~ ) = Ewee(~ ) - (cm. ) 
Jl z wee 

- 2 
V m2+I 2 m2+ 1. 

E(cr ) - AEwee(u ) = P + ? 11. “c 11 Q2 
J=i 2Yj p j =v+i 2YjP +2zp 
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APPENDIX B 

The formalism in Sec. III has been written in terms of the bare 

vertex XV. We will show that Rp can be rewritten in terms of a vertex 

function which contains all vertex corrections. 

To illustrate our point, let us consider a theory with coupling 

i?,zy5il’r$ where +and $ correspond to fields for proton and pion in the 

theory. Then V contains couplings 

and hermitian,conjugates. 
(.B-l) 

Consider the matrix element 

(-ADQV?>nd 1 cy> (B-2) 

For example take 1 cr> to be two proton state, and 1 LY ‘> to be two protons 

and one pion state. Diagramatically first and third term is given in 

Fig.10. In each order there are set of graphs which contains d function 

singularity representing the fact that two protons propagate without any 

interaction between them. We call these terms most singular term. All of the 

graphs given in the example are offhat nature except the set of graphs 

in Fig. 1%~. In general the matrix element (B-2) contains most 
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singular terms, i. e., set of graphs which represents the least number 

of interaction between particles in state / a> and equivalently particles 

in state I (Y’>. We represent 

ms 
(-XDQVf) 

nd 
(B-3 1 

the super and subscripts reminds us that we pick up only the most singular 

part of the non diagonal matrix element. The matrix element for 

Cnp, TI ,I l? / np> is shown in Fig. ti. 
I (Note however that such matrix 

element must be evaluated in accordance with the definition of the non- 

diagonal matrix element given in Sec. III 1. In terms of I-, we can show 

that 

[D Q n;, (-XVD, InI nd = [D Q ,ii (-H’QDQ)nlnd (B-4 1 

Essentially one can understand the identity as replacing the bare vertex 

by full vertex 

Therefore, every V in the expression for S matrix (3. 26) can be 

replaced by r 
Q’ 

Suppose Tp as defined in Eq. (B-3) is divergent, we will assume 

that rp = Z$ where Fe is independent of cut off parameter and Z is an 

infinite constant. Then Z is absorbed in redefinition of X. 
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FIGURE CAPTIONS 

Deep inelastic electron proton scattering and its variables. 

Simplest perturbation diagram which gives scale breaking 

effect. 

The bare proton in Fig. 2 is replaced by a physical proton. 

Two time ordered graphs contributing to (4.8) 

Diagramatic representation of deep inelastic electron- 

proton scattering. 

Example of vertex correction to parton photon vertex. 

Example of other radiative corrections. 

S matrix for e+ e- - hadrons. 

A schematic diagram for the ep scattering. 

Diagrams for first few terms of (A-7). 

Diagrams representing first and third term of (A-3). 

Diagram for <np, TI\ Tp /np>. 
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